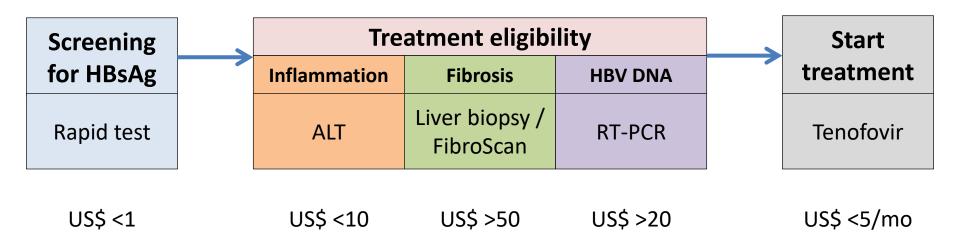


Universal Treatment *versus*Targeted Strategies: Optimal Approaches for Global Elimination of Hepatitis B

22 May 2024 Yusuke Shimakawa MD PhD

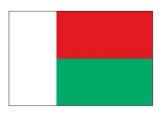
TREATING PEOPLE WITH CHRONIC HBV INFECTION


Screening for HBsAg

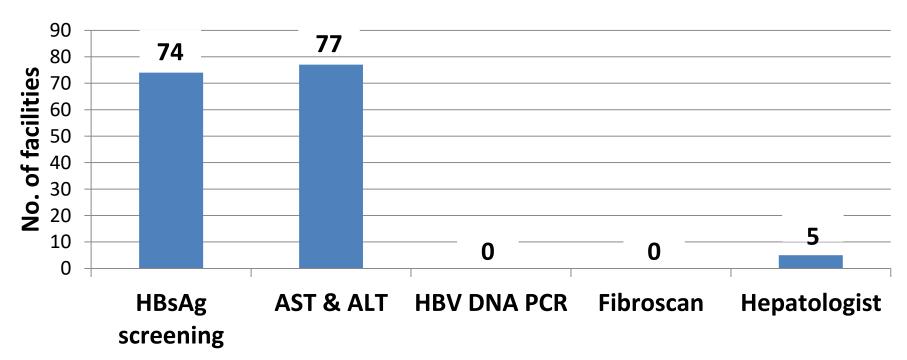
Rapid test

US\$ <1

Screening	Treatment eligibility				
for HBsAg	Inflammation	Fibrosis	HBV DNA		
Rapid test	ALT	Liver biopsy / FibroScan	RT-PCR		
US\$ <1	US\$ <10	US\$ >50	US\$ >20		


Screening		Treatment eligibility				Start
for HBsAg		Inflammation	Fibrosis	HBV DNA		treatment
Rapid test	Rapid test		Liver biopsy / FibroScan	RT-PCR		Tenofovir
US\$ <1		US\$ <10	US\$ >50	US\$ >20		US\$ <5/mo

10-30% meet the treatment eligibility criteria



Madagascar

Population: 23.5 million

Prevalence of HBsAg: 6.9%

Andriamandimby SF et al., BMC Public Health, 2017

Treat All

Screening for HBsAg

RDT

Treatment eligibility						
Inflammation	Fibrosis	HBV DNA				
ALT	Liver biopsy / Fibroscan	RT-PCR				

Start treatment

Tenofovir

Treat All

Pros

- Potentially improve treatment uptake by simplifying diagnosis
- People not meeting criteria may still develop liver diseases
- Cost-effective
- Tenofovir:
 - Not much adverse events
 - High barrier to resistence

Cons

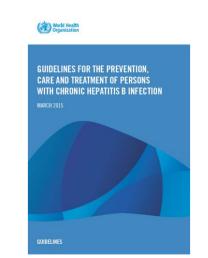
- Adherence to life-long treatment
- Question of feasibility
- HBV is different from HIV
 - Not all people with HBV develop liver diseases
 - Efficacy of treatment in people ineligible for treatment
 - No Global Fund, no subsidization

Treat All

Pros

- Potentially improve treatment uptake by simplifying diagnosis
- People not meeting criteria may still develop liver diseases
- O Cost-effective
 - Tenofovir:
 - Not much adverse events
 - High barrier to resistence

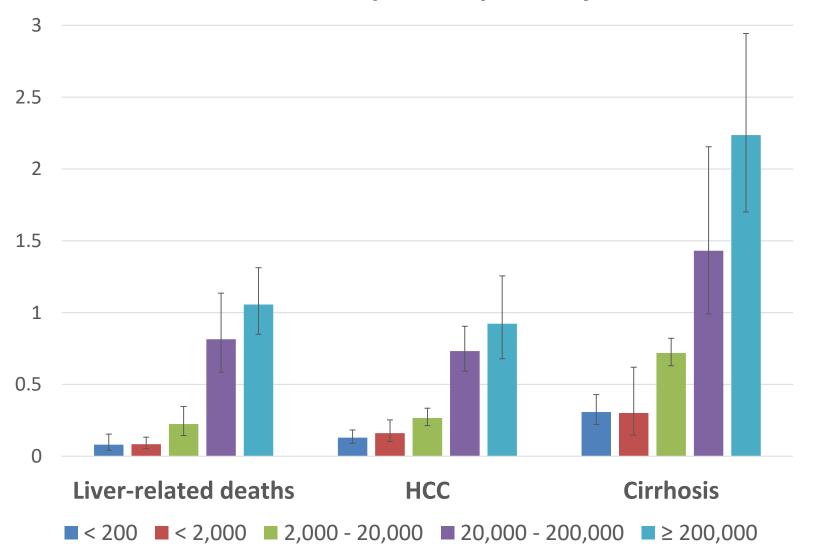
Cons

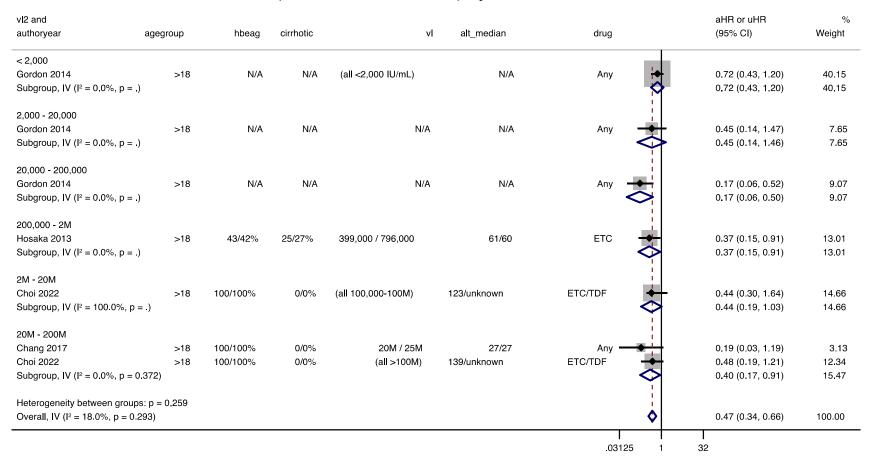

- Adherence to life-long treatment
- Question of feasibility
- HBV is different from HIV
 - Not all people with HBV develop liver diseases
 - Efficacy of treatment in people ineligible for treatment
 - No Global Fund, no subsidization

Updated WHO guidelines

- First guidelines in 2015
 - Cirrhosis

OR


- HBV DNA > 20 000 IU/mL & ALT > upper limit of normal
- Revising the guidelines in 2023
 - Maintaining HBV DNA threshold?
 - Or lowering HBV DNA threshold?
 - Or « Treat All »?


Systematic review commissioned by the WHO

- To provide a summary estimate of:
 - The incidence rate of developing clinical outcomes without treatment in a group of HBV-infected people without cirrhosis
 - The efficacy of antiviral therapy at preventing clinical outcomes in a group of HBV-infected people without cirrhosis
 - Stratified by HBV DNA levels (IU/mL)
 - < 200
 - < 2000
 - 2000 20 000
 - 20 000 200 000
 - ≥ 200000

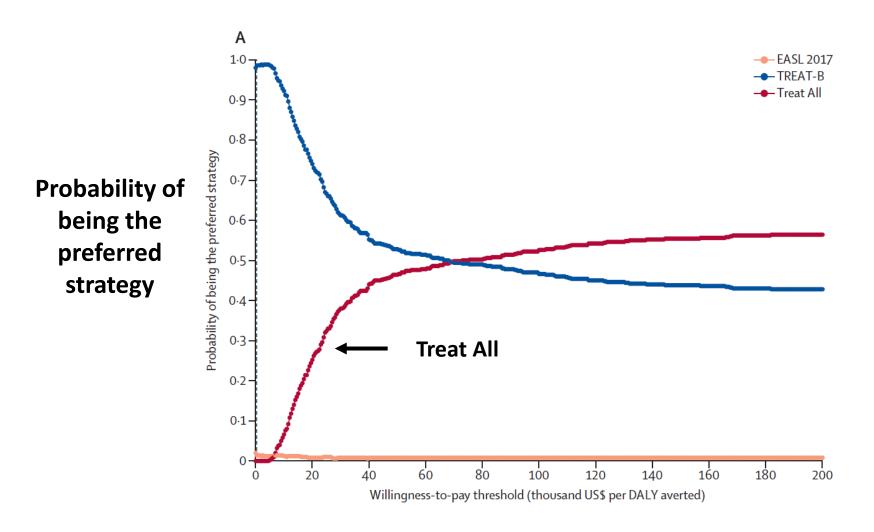
Incidence rates per 100 person-years

HCC (observational studies) by baseline viral load

The number needed to treat (NNT) for preventing one case of HCC

Viral load (IU/mL)	NNT
< 2000	149 people to treat after a median of 12 years
2000 – 19 999	45 people to treat after a median of 10 years
20 000 -199,999	11 people to treat after a median of 13 years

Cost-effectiveness of Treat All

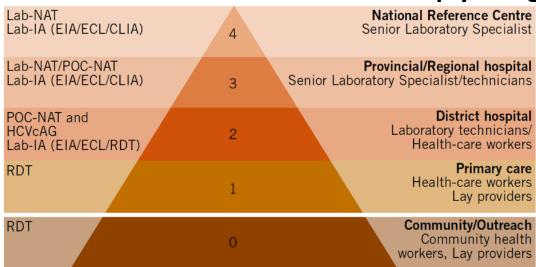

	Incremental cost- effectiveness ratio (ICER) per DALY averted	Threshold
Saudi Arabia	US\$ 22 050	US\$ 66 150
USA	US\$ 41 700	US\$ 65 850

Cost-effectiveness of Treat All

	Incremental cost- effectiveness ratio (ICER) per DALY averted	Threshold
Saudi Arabia	US\$ 22 050	US\$ 66 150
USA	US\$ 41 700	US\$ 65 850
The Gambia	US\$ 2 149	US\$ 352

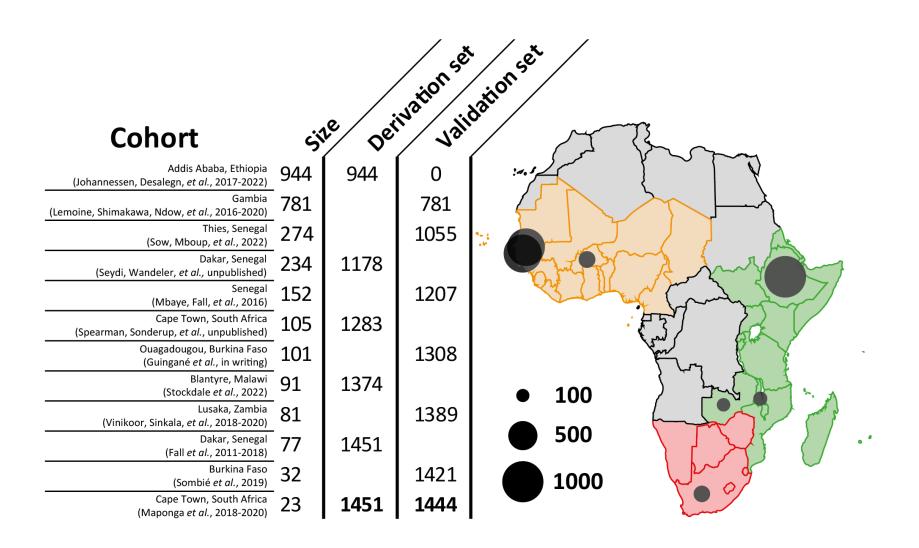
Sanai FM et al., *J Infect Public Health*, 2020 Razavi-Shearer D et al., *J Viral Hepat*, 2023 Luong Nguyen LB et al., *Lancet Glob Health* 2024

Cost-effectiveness acceptability curve

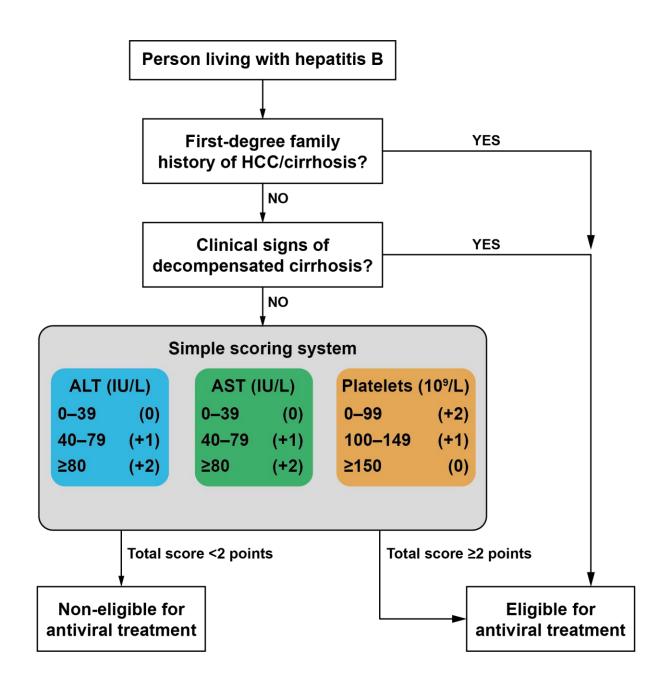


Willingness-to-pay (x 10³ US\$ / DALY averted)

• If not Treat All, then how can we best identify people in need of treatment?


HEPSANET score

 Develop and evaluate a score using tests available at lower-level facilities, to simplify the evaluation of antiviral therapy eligibility



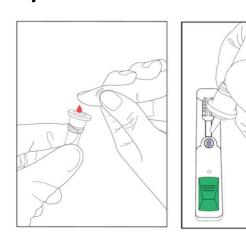
Consider the EASL 2017 criteria as a reference

HEPSANET

Parameters	Tiered level of healthcare facility*				Tier considered	
raiaiiieteis		Tier1	Tier2	Tier3	Tier4	for analysis
Sex	100%	100%	100%	100%	100%	0/1
Age	100%	100%	100%	100%	100%	0/1
First-degree family history (HCC, cirrhosis)	73%	82%	100%	100%	100%	0/1
Clinical diagnosis of jaundice	73%	82%	100%	100%	100%	0/1
Clinical diagnosis of ascites	27%	45%	100%	100%	100%	2
Clinical diagnosis of hepatic	27%	36%	82%	100%	100%	2
encephalopathy	2/70	36%	8270	100%	100%	2
Clinical diagnosing of variceal bleeding	18%	18%	55%	82%	100%	2
Labo	ratory p	aramete	ers			
Full blood count (platelets)	9%	36%	100%	100%	100%	2
Alanine aminotransferase (ALT)	9%	36%	91%	91%	100%	2
Aspartate aminotransferase (AST)	9%	36%	91%	91%	100%	2
Gamma-glutamyl transferase (GGT)	0%	9%	55%	73%	100%	2
Bilirubin	0%	18%	64%	73%	100%	2
Prothrombin time (INR)	0%	18%	55%	64%	73%	2
HBeAg (Rapid diagnosis test)	9%	18%	36%	60%	55%	3
HBeAg (Laboratory-based immunoassays)	0%	0%	18%	45%	82%	3
HBV DNA (Xpert)	0%	0%	9%	55%	82%	3
HBV DNA (Conventional platform)	0%	0%	9%	27%	73%	4
Transient elastography (FibroScan)	0%	0%	0%	9%	82%	4
Liver biopsy	0%	0%	0%	9%	100%	4
Histopathology	0%	0%	0%	9%	82%	4

Validation cohort (n = 1444)

Test	AUROC [95% CI]	Sensitivity (%)	Specificity (%)
HEPSANET score (ALT, AST, platelet)	0.83 [0.80–0.86]	78	87
WHO 2015 (HBV DNA, ALT, APRI)	0.68 [0.64–0.72]	38	98
TREAT-B (ALT, HBeAg)	0.88 [0.86–0.91]	91	85



- Rapid test to detect HBcrAg
- 284 HBV-infected adults in The Gambia
- Reference criteria: ALT, FibroScan, HBV DNA
- Index criteria: ALT, FibroScan, HBcrAg-RDT
 - Specificity 86.3% Sensitivity96.6%

Conclusions

- To achieve global elimination of hepatitis, it is essential to scale up screening & clinical staging for hepatitis B
- Treat All is attractive, but requires data on feasibility & acceptability
- This may be justified when HBV cure is possible
- Essential to develop a locally-adapted simplified model of care

Thank you

- Institut Pasteur
 - Prof. Arnaud Fontanet
 - Dr. Muriel Vray
 - Dr. Jeanne Perpétue Vincent
 - Dr. Daniela Yucuma Conde
 - Dr. Arthur Rakover
 - Dr. Liem Luong Nguyen
- Imperial College, London
 - Prof. Maud Lemoine
 - Dr. Yu Ri Im
 - Dr. Emma Chen
 - Dr. Rukumi Jagdish
 - Dr. Zakary Worsop
- WHO
 - Prof. Philippa Easterbrook
 - Prof. Roger Chou
- MRC Unit, The Gambia
 - Dr. Gibril Ndow
- Kumamoto University
 - Prof. Yasuhito Tanaka
- Institut Pasteur de Madagascar
 - Dr. Soa Fy Andriamandimby

